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Cumulant formalism for the Blume-Emery-Griffiths model
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Received 20 March 1991, in final form 3 September 1991

Abstract. An integral equation of the Curie tempetature for the Blume-Emery-Griffiths
model is derived. Numerical integration is carried out and the resulls for s¢, BCC and
FCC lattices are presented.

The spin-1 Ising mode! with both bilinear and biquadratic interactions along with the
single-ion anisotropy is expressed by

H:-Zh;Sf—DZ(Sf)z—%ZJ,JSfS’—uz . (8%)? (5%) (0

where h; is the external field acting on site ¢, D is the strength of the single-ion
amsotropy, and J;; and J; represent the bilinear and biquadratic exchange integrals
respectively. The above equat:lon is usually referred to as the Blume-Emery-Griffiths
(BEG) (1971) model and has been studied by several workers during the past few
years (Chakraborty 1984, 1988, Chakraborty and Morita 1984, 1985, Chakraboity
and Tucker 1986, Tucker 1987, 1988, 1989, Siqueira and Fittipaldi 1985, Fittipaldi
and Siqueira 1986, Kaneyoshi 1987, Kaneyoshi and Sarmento 1988, Ziegler 1986,
Wang et al 1987, Wang and Wentworth 1987, De Alcantara Bonfim and Sa’ Barreto
1985, 1986). The purpose of the present paper is to employ the cumulant expansion
technique (Horwitz and Callen 1961, Frank and Mitran 1977, 1978, Frank et al 1982).
Such formalism for the BEG model has not been carried out in the past.
Kubo’s (1957) correlation identities are expressed as

(1A, Bl = [ Lipw)lexp(8w) - exp(-iwt) a)

(1A(1), B), f I, 5(w)lexp(Bw) + 1} exp(—iwt) ()

where [ ] is the commutator and [ ], is the anticommutator, and A and B are any
two quantum mechanical operators; A(t) = exp(iHt)Aexp(—1H1t) is the operator
A in the Heisenberg representation. The angular brackets denote thermal averages.
I,p is the spectral density of the correlation function {B(O)A(t)). The symbol 3
stands for 1/ky T, kg being the Boltzmann constant.
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Using the relations
SH() = exp [-it (h; + O] (SF — off) + exp [—it(h; + O; + D+ Qo (3a)
of (1) = exp [~it (h; + O;)lexp [-it (D + Q)] (28f - 1) - 2(S}f ~1)of  (3b)
where

oF = 87 8% + 5F 87 (42)

Q=Z%$ (4)

Z Si) (4c)
and, considering A = S}, B= 57 and A = S}, B = o] we arrive at the following
equation for the order parameters {S7) and A = (3(S7)* -2}

(§F) =4L/ [(1 - DG+ 1) + I) &)
A=[al(1-D+431/[(L-DE+ D+ I7]. (6)

Other pau's A=of, B=o] and A = of, B = S also lead to the same
expressions as above. I., and I are given by

I, = —%[w dt cosech (%t) {exp it (h; + O;)]) Q)

——j dt cosech ( ) {exp it (h; + O;)]exp it (D + @)} - 1). (8)

The averages are expressed in terms of semi-invariants or cumulants (Horwitz and
Callen 1961):

{expaz) = exp (i a” —M (a:)) )]

n=]

where M, (x) denote the semi-invariants. For two variables » and y, one has the
relation M, (2 + y) = M, () + M, (y). Let = = O;, y = Q,. Following Frank and
Mitran (1977) we obtain after necessary simplification the following integral equation
for the Curie temperature T:

kg_?;c_ = % fow dz cosech(nz) (2,2 + a;2° + a32%) exp (by 27 + byz* + b,2°)
(10)
where Z is the number of nearest neighbours, J is the exchange constant and
a; =1 a, = LbKZ az = Fb*KE
by=—3bK%  by=—5BKE by = —gsbiKE (11)

A=8/(1-I°N3+I%
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where IC is the value of the integral I at T, Ko = ZJ/kgT. and T is the
transition temperatuere. b is given by

b= 42+ M) {[F(1) - 11/ FQ1)} . (12)
Approximations used in deriving equation (10) are

M3 (=) = (¢ +2){[F(1) - 1)/ F(1)} J*Z*[3
(x2%) = b J2n Z2m forn>1 (13)
(y'.ll) = aﬂ.bﬂanﬂ
where o = J'/J, J' and J being the nearest-neighbour bilinear and biquadratic
exchange constants, We have also used the symbol o’ = D/J which has been,

however, taken to be zero in the results of computation. The quantity Ao denotes
the value of A at T. :

Table 1. Values of kg T /J for various values of o and for sc, BcC and Fec lattices
obtained from the present calculations.

ks Te/Jd

o 5C BCC FCC

1.0 3877 508 7569
0.8 3743 4929 7350
0.6 3.618 4785 17.150
0.4 3502 4655 6972
0.2 3398 4540 6815
] 3305 4438 6.675
-02 3223 4348 6.555
-04 3151 4270 6.449
=06 3.089 4202 6357
=08 3.035 4142 6276
~1.0 3.000 4.090 6205

Equation (10) is to be computed in conjunction with equations (6) and (8) in the
limit T approaching T,.. Considering the leading terms in equations (6) and (8) and
using them in equation (10), numerical integration has been carried by the Gaussian
quadrature formula. The computation was done for SC, BCC and FCC lattices up to
the sixth-order cumulants. The values of the Watson sum F'(1) have been taken
as 1.51638, 1.39320 and 1.34466 for sC, BCC and FCC lattices, respectively. For
simplicity we have concentrated only on the nature of variation in T, with . The
results are summarized in table 1. From the table we note that as « decreases, the
Curie temperature decreases and, as the number of nearest neighbours increases, T
increases. We note that the values of the Curie temperature obtained in the present
calculations are Jower than those obtained by the cluster variation method in the pair
approximation (Tucker 1988) and the Bethe lattice solution (Chakraborty and Tucker
1986). The absence of a re-entrant phenomenon in the present calculations is to be
noted and needs further investipations considering higher-order cumulants,
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